(a)	One purpose of the coolant in a thermal nuclear reactor is to maintain a safe working temperature within the core.								
	State the other purpose.								
(b)	State two properties that engineers consider when choosing a liquid to use as a coolant in a thermal nuclear reactor.								
	1								
	2								
c)	Explain how the power output of a thermal nuclear reactor is decreased.								

(2)

(Total 5 marks)

Q2.

A team of students uses 900 dice, each with n sides, to model the decay of a radioactive material. Each dice represents a single undecayed nucleus. A throw of the dice represents a constant time interval.

When the dice are thrown, those that show a 1 represent decayed nuclei and are removed.

The students count the number N of 'undecayed' dice that remain.

The procedure is repeated using the undecayed dice.

The figure below shows the students' data.

(a)	Explain why N has been plotted on a logarithmic scale in above figure.

(b)	In this experiment, a decay constant $\boldsymbol{\lambda}$ can be defined that models the radioactive decay constant.
	Determine λ . Go on to use your value for λ to show that $n=4$ for the dice used in this experiment.
	$\lambda = \underline{\qquad \qquad } throw^{-1}$
(c)	A typical radioactive source used in schools has an activity of 100 kBq . A radioactive source used in a hospital has an activity of 370 GBq .
	State one safety measure when using a radioactive source in a school laboratory.
	Go on to discuss how this safety measure needs to be adapted for safe use of the hospital radioactive source.
	(2

(d)	X-rays are a form of ionising radiation.
	A person has check-ups with a dentist every six months. The dentist only takes X-ray images when the person has reported a problem.
	Suggest why.
	(2)
	(Total 10 marks)

(2)

Q3.

(a) Nuclear radii can be estimated using either alpha particles or high-energy electrons.

State **two** advantages of using high-energy electrons rather than alpha particles for this estimate.

1	
2	

(b) **Figure 1** shows a beam of electrons, each with the same high energy, incident on a target gas.

The electrons are diffracted by the nuclei in the gas.

The intensities of these diffracted electrons are measured at various angles θ .

The data are used to determine the nuclear radius ${\it R}$ of the atoms in the gas.

Figure 1

Sketch on **Figure 2** a graph showing how the electron intensity varies with θ .

Figure 2

(2)

(c) The radius R of a nucleus is related to its nucleon number by $R = R_0 A_{\overline{3}}^{\frac{1}{3}}$.

Show that this equation is consistent with the idea that all nuclei have the same density.

(2)

(d) The equation $R = R_0 A^{\frac{1}{3}}$ is derived from experimental data.

Suggest **one** reason why the constant density of nuclear material derived from this equation is only approximate.

(1)

(e) The measured radius R of $\frac{35}{17}$ C1 is 4.02×10^{-15} m.

Calculate an estimate of

- the constant R_0
- the density of nuclear material.

$R_0 =$	_ m	density =	kg m ⁻³	
				(3)
			(Total 10 mai	rks)

Q4.

(a))	Carbon	is	used	as	the	mod	lerat	or i	in	some	thermal	nucle	ar r	eactors	۶.
-----	---	--------	----	------	----	-----	-----	-------	------	----	------	---------	-------	------	---------	----

Identify **one** other material commonly used as a moderator.

(1)

(b) State **two** benefits of slowing down the neutrons released during fission.

1 _____

2 _____

(2)

(c) The collision of a neutron with the nucleus of a moderator atom is modelled using two gliders on a horizontal frictionless air track.

In **Figures 1** and **2** the glider **N** of mass m_N represents the neutron and the glider **M** of mass m_M represents the moderator nucleus.

Figure 1 shows glider **N** travelling with initial speed u towards the stationary glider **M**.

The gliders collide. **N** rebounds with speed v as shown in **Figure 2**.

frictionless air track

before collision

Figure 2

Figure 3 shows the variation of the ratio \overline{u} with the ratio $\overline{m_N}$.

Show that when m_N is 12, **N** loses about 30% of its initial kinetic energy in the collision.

In a reactor, the speed of a fast-moving neutron is reduced by a series of y(d) random collisions with carbon-12 nuclei.

The final kinetic energy $E_{\rm f}$ of the neutron is

$$E_{\rm f}$$
 = $E_0 {\rm e}^{-by}$

where E_0 is the initial kinetic energy of the neutron and b = 0.73

A thermal neutron has kinetic energy equivalent to that of the average particle of an ideal gas with a temperature of 350 K.

One neutron has an initial kinetic energy of 1.0 MeV.

(2)

	Calculate the minimum value of y required so that this neutron becomes a thermal neutron.	
	<i>y</i> =	
		(3)
(e)	Explain, with reference to Figure 3 , why elements with a small nucleon number are preferred as moderator materials.	
	· <u></u> .	
	(Total 10 r	(2) narks)

(2)

Q5.

Fission and fusion are two processes that can result in the transfer of binding energy from nuclei.

(a) State what is meant by the binding energy of a nucleus.

(b) Calculate, in MeV, the binding energy for a nucleus of iron ${}^{56}_{26}$ Fe.

mass of ${}^{56}_{26}\mathrm{Fe}$ nucleus = $9.288\times10^{-26}\,kg$

(3)

Figure 1 shows a graph of average binding energy per nucleon against nucleon number for common nuclides.

(c) The nuclide labelled **X** in **Figure 1** undergoes fission.

Annotate **Figure 1** with F_1 and F_2 to show **one** possible pair of nuclides resulting from the fission of X.

(2)

(d) Figure 2 shows a graph of N against Z for stable nuclides.

Figure 2

Deduce the likely initial mode of decay of F_1 and F_2 . Refer to Figure 2 in your answer.	
	(3)
(101	al 10 marks)